Introduction to
E Kotlin

Victor Kropp
@kropp

Who am I?

At & JetBrains since 2008

>}
P

victor.kropp.name

oo
=

K Kotlin

- Sample Java App

package kropp.name.myapp;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
public class MainActivity extends AppCompatActivity {
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity main);

K Kotli
2 Sample Kotlin App

package kropp.name.myapp
import android.support.v7.app.AppCompatActivity
import android.os.Bundle
class MainActivity : AppCompatActivity() {
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)

E Kotlin
r Make val not var

var mutable: String
val immutable: String

K Kotlin .
Properties

class C {
var prop: String =

¥

K Kotlin .
Properties

public class C {

private String prop;

public String getProp() {
return prop;

}

public void setProp(String prop) {
this.prop = prop;

}

public C() { this.prop = ""; }

K Kotlin .
Properties

class C {
val prop: String

get() {
return

K Kotlin .
Properties

class C {
val prop: String
get() — 1

K Kotlin .
Properties

class C {
private var myProp: String =

val prop: String
get() = myProp

K Kotlin .
Properties

public class C {
private String myProp;
public String getProp() {
return myProp;
}
public C() {
this.myProp = "";

K Kotlin .
Properties

class C {
lateinit var prop: String

¥

K Kotlin .
Primary constructor

class Person(
firstName: String,
lastName: String,
age: Int

) o

K Kotlin .
Primary constructor

class Person(
var firstName: String,
var lastName: String,
var age: Int

)

K Kotlin

Data classes

data class Person(
var firstName: String,
var lastName: String,
var age: Int

)

package kotlindemo;
import java.util.Objects;

public class tmp {
private String firstName;

(]
private String lastName;
v u Iv private int age;

public tmp(String firstName, String lastName, int age) {
this.firstName = firstName;
this.lastName = lastName;
this.age = age;

}

public String getFirstName() {
return firstName;

}

public void setFirstName(String firstName) {
this.firstName = firstName;

}

public String getLastName() {
return lastName;

}

public void setLastName(String lastName) {
this.lastName = lastName;

}

public int getAge() {
return age;

}

public void setAge(int age) {
this.age = age;

}

@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
tmp tmp = (tmp) o;
return age == tmp.age &&
Objects.equals(firstName, tmp.firstName) &&
Objects.equals(lastName, tmp.lastName);
}

@Override
public int hashCode() {
return Objects.hash(firstName, lastName, age);
}
}

K Kotlin .
| String templates

val list = ListOf<String>()

val count = list.size
val template = "$count items”

val template = "${list.size} items"

E Kotlin o
r Kotlin is fun

fun () {

£ Kotlin . .
r Kotlin is fun

fun max(a: Int, b: Int): Int {
if (a > b) {
return a
} else {
return b

£ Kotlin . .
r Kotlin is fun

fun max(a: Int, b: Int): Int {
val max = if (a > b) {
a
} else {
b
}

return max

£ Kotlin . .
r Kotlin is fun

fun max(a: Int, b: Int): Int {
return if (a > b) {
a
} else {
b

}
}

£ Kotlin . .
r Kotlin is fun

fun max(a: Int, b: Int): Int

if (a > b) a else b

£ Kotlin . .
r Kotlin is fun

fun max(a: Int, b: Int): Int

if (a > b) a else b

£ Kotlin . .
r Kotlin is fun

fun max(a: Int, b: Int)

if (a > b) a else b

E Kotlin .
Generics

fun <T> singletonList(item: T): List<T>

K Kotlin
r Default arguments

fun reformat(str: String,
normalizeCase: Boolean = true,

upperCaseFirstLetter: Boolean = true,
divideByCamelHumps: Boolean = false,
wordSeparator: Char = " ") {

K Kotlin
r Default arguments

reformat(str) Default arguments are used

reformat(str, true, true, false, '_")

K Kotlin
Named arguments

reformat(str,
normalizeCase = true,
upperCaseFirstLetter = true,
divideByCamelHumps = false,
wordSeparator = "'

K Kotlin
varargs

fun foo(vararg strings: String) {}

foo("a")
foo("a", "b")
foo(*arrqyaf(" ", "b", "c"))

£ Kotlin . .
r Extension functions

fun Int.days(): Period

fun Period.ago(): Date

3.days().ago()
2.months().later()

K Kotlin . .
Extension properties

val Int.days: Period

get() = ...
val Period.ago: Date

get() = ...

3.days.ago
2.months. later

E Kotlin .
Nullable receiver

fun Any?.toString(): String {
if (this == null) return "null”
return toString()

} after the null check, this is autocast to a non-null type,
so the toString() call resolves to the member function
of the Any class

K Kotlin .
r Operator overloading

public inline operator fun BigInteger.plus(other: BigInteger) :
BigInteger = this.add(other)

val il = BiglInteger.valueOf(1)
val i2 = BigInteger.valueOf(2)
val sum = i1 + 12

K Kotlin .
Operator overloading

+a a.unaryPlus() a+ b a.plus(b) a += b a.plusAssign(b)
-a a.unaryMinus() a - b a.minus(b) a -= b a.minusAssign(b)
la a.not() a * b a.times(b) a *= b a.timesAssign(b)
a++ a.inc() a/ b a.div(b) a /= b a.divAssign(b)
a-- a.dec() a%b a.rem(b) a %= b a.remAssign(b)
a..b a.rangeTo(b)

a >b a.compareTo(b) > ©

a < b a.compareTo(b) < ©

a >= b a.compareTo(b) >= ©

a <= b a.compareTo(b) <= ©

K Kotli
2 Equality

a==>b // a.equals(b)

= b

d

K Kotli
2 get()/set() convention

val map = mutableMapOf<String,Any>()

map["key"] = "value"
val value = map["key"]

K Kotlin . .
invoke() convention

dependencies.compile("org.jetbrains.kotlinx:kotlinx-html-jvm:0.6.4")

dependencies {
compile("org.jetbrains.kotlinx:kotlinx-html-jvm:0.6.4")

K Kotlin . .
r invoke() convention

fun DependencyObj.invoke(builder: DependencyObj.() -> Unit)
= this.apply(builder)

E Kotlin .
Infix notation

public infix fun <A, B> A.to(that: B): Pair<A, B>
= Pair(this, that)

"key".to("value")
"key" to "value”

E Kotlin .
Infix notation

for (i in © until 10 step 2) {
// 0, 2, 4, 6, 8
}

K Kotlin .
r Lambda expressions

val sum = { x: Int, y: Int -> X + vy }

val sum: (Int, Int) -> Int = { X, vy -> x + vy }

K Kotlin .
r Lambda expressions

val sum = { x: Int, y: Int -> X + vy }

val sum: (Int, Int) -> Int = { X, vy -> x + vy }

{ n->this + n }

val sum : Int.(Int) -> Int

£ Kotlin

val

val

val

val

sum

sum

sum .

sum .

Lambda expressions

= { x: Int, y: Int -> x +vy }

: (Int, Int) -> Int
Int.(Int) -> Int

Int.(Int) -> Int

1X Yy ->x+y}
{ n->this + n }

{ this + it }

K Kotlin .
r Lambda expressions

val list = ListOf<Int>()

list.filter({ it > 0 })

K Kotlin .
r Lambda expressions

val list = ListOf<Int>()

list.filter { it > 0 }

K Kotlin .
r Lambda expressions

val list = ListOf<Int>()

list.filter { it > © }.map { it*2 }

E Kotlin) . .
inline functions

inline fun <T> Iterable<T>.filter(predicate: (T) -> Boolean):
List<T> {

val result = mutableListOf<T>()
for (it in this) {

if (predicate(it)) {

result.add(it)

}

}

return result

K Kotlin
| Null safety

val canBeNull: String?
val notNull: String

K Kotli
A Null safety

fun nullability(str: String?) {
val dot = str.indexOf(".")

¥

K Kotli
A Null safety

fun nullability(str: String?) {
val dot = str.indexOf(".")

} Only safe (?.) or non-null asserted (!!.) calls are allowed
on a nullable receiver of type String?

K Kotli
A Null safety

fun nullability(str: String?) {
val dot = str!!.indexOf(".")

} Non-null asserted call
May throw NullPointerException

Usually a bad style,
use only when you know what you are doing

K Kotlin
| Null safety

fun nullability(str: String?) {
val dot = str?.indexOf(".")

} Safe call
The result will be null if stris null

K Kotli
A Null safety

fun nullability(str: String?) {
val dot = str?.indexOf(".") ?: ©

} Elvis operator
The result will be 0 if str?.index0f () returns null

K Kotlin
Type casts

fun cast(obj: Any) {
if (obj is String) {
val dot = obj.indexOf(".")

} Smart cast
} obj is String inside ‘then’ branch

K Kotlin
Type casts

fun cast(obj: Any) {
val str = obj as String
val dot = str.indexOf(".")

K Kotlin
Type casts

fun cast(obj: Any) {
val str = obj as? String

Safe cast
strisnull if obj is not a String

val dot = str.indexOf(".")

K Kotlin .
when expression

class Expr

class Const(val number: Double) : Expr()

class Sum(val el: Expr, val e2: Expr) : Expr()
object NotANumber : Expr()

fun eval(expr: Expr): Double = when(expr) {
is Const -> expr.number
is Sum -> eval(expr.el) + eval(expr.e2)
NotANumber -> Double.NaN
else -> 0

K Kotlin
| Sealed types

sealed class Expr

class Const(val number: Double) : Expr()

class Sum(val el: Expr, val e2: Expr) : Expr()
object NotANumber : Expr()

fun eval(expr: Expr): Double = when(expr) {
is Const -> expr.number
is Sum -> eval(expr.el) + eval(expr.e2)
NotANumber -> Double.NaN

K Kotlin
Delegates

val LazyValue: String by Llazy {
// some Long computation
"Hello World!"™

K Kotlin
Delegates

class User(val map: Map<String, Any?>) {
val name: String by map
val age: Int by map

¥

K Kotlin
Delegates

interface ReadOnlyProperty<in R, out T> {
operator fun getValue(thisRef: R, property: KProperty<*>): T
}

interface ReadWriteProperty<in R, T> {
operator fun getValue(thisRef: R, property: KProperty<*>): T
operator fun setValue(thisRef: R, property: KProperty<*>, value: T)
}

K Kotlin Coroutines (Kotlin 1.1)

Asynchronous programming made easy

Will cover in details in a separate talk later today

K Kotlin

Kotlin for Android

- K Kotlin
in Android Studio

Supported out of the box
since 3.0

Code samples are available
in Kotlin too

Kotlin Android Extensions

Anko

K Kotlin
Anko

verticallLayout {
val name = editText()
button("Say Hello") {
onClick { toast("Hello, ${name.text}!") }

K Kotlin .
Links

Kotlin
https.//kotlinlang.org

Kotlin Koans
https.//try.kotl.in

https://kotlinlang.org
https://try.kotl.in

K Kotlin

Kotlin Community

slack

https://kotlinlang.slack.com/

Get invite at
http://slack.kotlinlang.org/

https://kotlinlang.slack.com/
http://slack.kotlinlang.org/

K Kotli . e .
a Kotlin in Action

| | BT

K Kotlin

Thank you!

Victor Kropp

@kropp
victor.kropp.name

K Kotlin

Questions?

Victor Kropp

@kropp
victor.kropp.name

