
Introduction to

Victor Kropp
@kropp

Who am I?

At JetBrains since 2008

victor.kropp.name

Sample Java App

package kropp.name.myapp;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

public class MainActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

}

Sample Kotlin App

package kropp.name.myapp

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

class MainActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

 }

}

Make val not var

var mutable: String

val immutable: String

Properties

class C {

 var prop: String = ""

}

Properties

public class C {

 private String prop;

 public String getProp() {

 return prop;

 }

 public void setProp(String prop) {

 this.prop = prop;

 }

 public C() { this.prop = ""; }

}

Properties

class C {

 val prop: String

 get() {

 return ""

 }

}

Properties

class C {

 val prop: String

 get() = ""

}

Properties

class C {

 private var myProp: String = ""

 val prop: String

 get() = myProp

}

Properties

public class C {

 private String myProp;

 public String getProp() {

 return myProp;

 }

 public C() {

 this.myProp = "";

 }

}

Properties

class C {

 lateinit var prop: String

}

Primary constructor

class Person(
 firstName: String,
 lastName: String,
 age: Int

) {

 …
}

Primary constructor

class Person(
 var firstName: String,
 var lastName: String,
 var age: Int

)

Data classes

data class Person(
 var firstName: String,
 var lastName: String,
 var age: Int

)

Java equivalent

package kotlindemo;

import java.util.Objects;

public class tmp {
 private String firstName;
 private String lastName;
 private int age;

 public tmp(String firstName, String lastName, int age) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.age = age;
 }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public int getAge() {
 return age;
 }

 public void setAge(int age) {
 this.age = age;
 }

 @Override
 public boolean equals(Object o) {
 if (this == o) return true;
 if (o == null || getClass() != o.getClass()) return false;
 tmp tmp = (tmp) o;
 return age == tmp.age &&
 Objects.equals(firstName, tmp.firstName) &&
 Objects.equals(lastName, tmp.lastName);
 }

 @Override
 public int hashCode() {
 return Objects.hash(firstName, lastName, age);
 }
}

String templates

val list = listOf<String>()

val count = list.size

val template = "$count items"

val template = "${list.size} items"

Kotlin is fun

fun f() {

}

Kotlin is fun

 fun max(a: Int, b: Int): Int {

 if (a > b) {

 return a

 } else {

 return b

 }

 }

Kotlin is fun

 fun max(a: Int, b: Int): Int {

 val max = if (a > b) {

 a

 } else {

 b

 }

 return max

 }

Kotlin is fun

 fun max(a: Int, b: Int): Int {

 return if (a > b) {

 a

 } else {

 b

 }

 }

Kotlin is fun

fun max(a: Int, b: Int): Int = if (a > b) a else b

Kotlin is fun

fun max(a: Int, b: Int): Int = if (a > b) a else b

Kotlin is fun

fun max(a: Int, b: Int) = if (a > b) a else b

Generics

fun <T> singletonList(item: T): List<T> = …

Default arguments

fun reformat(str: String,

 normalizeCase: Boolean = true,

 upperCaseFirstLetter: Boolean = true,

 divideByCamelHumps: Boolean = false,

 wordSeparator: Char = ' ') {

}

Default arguments

reformat(str)

reformat(str, true, true, false, '_')

Default arguments are used

Named arguments

reformat(str,

 normalizeCase = true,

 upperCaseFirstLetter = true,

 divideByCamelHumps = false,

 wordSeparator = '_'

)

varargs

fun foo(vararg strings: String) {}

foo("a")

foo("a", "b")

foo(*arrayOf("a", "b", "c"))

Extension functions

fun Int.days(): Period = …

fun Period.ago(): Date = …

3.days().ago()

2.months().later()

Extension properties

val Int.days: Period

 get() = …
val Period.ago: Date

 get() = …

3.days.ago

2.months.later

Nullable receiver

fun Any?.toString(): String {

 if (this == null) return "null"

 return toString()

} after the null check, this is autocast to a non-null type,
so the toString() call resolves to the member function
of the Any class

Operator overloading

public inline operator fun BigInteger.plus(other: BigInteger) :

 BigInteger = this.add(other)

 val i1 = BigInteger.valueOf(1)

 val i2 = BigInteger.valueOf(2)

 val sum = i1 + i2

Operator overloading

+a a.unaryPlus()
-a a.unaryMinus()
!a a.not()
a++ a.inc()
a-- a.dec()

a + b a.plus(b)
a - b a.minus(b)
a * b a.times(b)
a / b a.div(b)
a % b a.rem(b)
a..b a.rangeTo(b)

a += b a.plusAssign(b)
a -= b a.minusAssign(b)
a *= b a.timesAssign(b)
a /= b a.divAssign(b)
a %= b a.remAssign(b)

a > b a.compareTo(b) > 0
a < b a.compareTo(b) < 0
a >= b a.compareTo(b) >= 0
a <= b a.compareTo(b) <= 0

Equality

a == b // a.equals(b)

a === b

get()/set() convention

val map = mutableMapOf<String,Any>()

map["key"] = "value"

val value = map["key"]

invoke() convention

dependencies.compile("org.jetbrains.kotlinx:kotlinx-html-jvm:0.6.4")

dependencies {

 compile("org.jetbrains.kotlinx:kotlinx-html-jvm:0.6.4")

}

invoke() convention

fun DependencyObj.invoke(builder: DependencyObj.() -> Unit)
 = this.apply(builder)

Infix notation

public infix fun <A, B> A.to(that: B): Pair<A, B>
 = Pair(this, that)

"key".to("value")

"key" to "value"

Infix notation

for (i in 0 until 10 step 2) {

 // 0, 2, 4, 6, 8

}

Lambda expressions

val sum = { x: Int, y: Int -> x + y }

val sum: (Int, Int) -> Int = { x, y -> x + y }

Lambda expressions

val sum = { x: Int, y: Int -> x + y }

val sum: (Int, Int) -> Int = { x, y -> x + y }

val sum : Int.(Int) -> Int = { n -> this + n }

Lambda expressions

val sum = { x: Int, y: Int -> x + y }

val sum: (Int, Int) -> Int = { x, y -> x + y }

val sum : Int.(Int) -> Int = { n -> this + n }

val sum : Int.(Int) -> Int = { this + it }

Lambda expressions

val list = listOf<Int>()

list.filter({ it > 0 })

Lambda expressions

val list = listOf<Int>()

list.filter { it > 0 }

Lambda expressions

val list = listOf<Int>()

list.filter { it > 0 }.map { it*2 }

inline functions

inline fun <T> Iterable<T>.filter(predicate: (T) -> Boolean):

 List<T> {

 val result = mutableListOf<T>()

 for (it in this) {

 if (predicate(it)) {

 result.add(it)

 }

 }

 return result

}

Null safety

val canBeNull: String?

val notNull: String

Null safety

fun nullability(str: String?) {

 val dot = str.indexOf(".")

}

Null safety

fun nullability(str: String?) {

 val dot = str.indexOf(".")

} Only safe (?.) or non-null asserted (!!.) calls are allowed
on a nullable receiver of type String?

Null safety

fun nullability(str: String?) {

 val dot = str!!.indexOf(".")

} Non-null asserted call

May throw NullPointerException

Usually a bad style,
use only when you know what you are doing

Null safety

fun nullability(str: String?) {

 val dot = str?.indexOf(".")

} Safe call

The result will be null if str is null

Null safety

fun nullability(str: String?) {

 val dot = str?.indexOf(".") ?: 0

} Elvis operator

The result will be 0 if str?.indexOf() returns null

Type casts

fun cast(obj: Any) {

 if (obj is String) {

 val dot = obj.indexOf(".")

 }

}
Smart cast

obj is String inside ‘then’ branch

Type casts

fun cast(obj: Any) {

 val str = obj as String

 val dot = str.indexOf(".")

}

Type casts

fun cast(obj: Any) {

 val str = obj as? String

 val dot = str.indexOf(".")

}

Safe cast

str is null if obj is not a String

when expression

class Expr

class Const(val number: Double) : Expr()

class Sum(val e1: Expr, val e2: Expr) : Expr()

object NotANumber : Expr()

fun eval(expr: Expr): Double = when(expr) {

 is Const -> expr.number

 is Sum -> eval(expr.e1) + eval(expr.e2)

 NotANumber -> Double.NaN

 else -> 0

}

Sealed types

sealed class Expr

class Const(val number: Double) : Expr()

class Sum(val e1: Expr, val e2: Expr) : Expr()

object NotANumber : Expr()

fun eval(expr: Expr): Double = when(expr) {

 is Const -> expr.number

 is Sum -> eval(expr.e1) + eval(expr.e2)

 NotANumber -> Double.NaN

}

Delegates

val lazyValue: String by lazy {

 // some long computation

 "Hello World!"

}

Delegates

class User(val map: Map<String, Any?>) {

 val name: String by map

 val age: Int by map

}

Delegates

interface ReadOnlyProperty<in R, out T> {

 operator fun getValue(thisRef: R, property: KProperty<*>): T

}

interface ReadWriteProperty<in R, T> {

 operator fun getValue(thisRef: R, property: KProperty<*>): T

 operator fun setValue(thisRef: R, property: KProperty<*>, value: T)

}

Coroutines (Kotlin 1.1)

Asynchronous programming made easy

Will cover in details in a separate talk later today

Kotlin for Android

in Android Studio

Supported out of the box
since 3.0

Code samples are available
in Kotlin too

Kotlin Android Extensions

Anko

Anko

verticalLayout {

 val name = editText()

 button("Say Hello") {

 onClick { toast("Hello, ${name.text}!") }

 }

}

Links

Kotlin
https://kotlinlang.org
Kotlin Koans
https://try.kotl.in

https://kotlinlang.org
https://try.kotl.in

Kotlin Community

https://kotlinlang.slack.com/

Get invite at
http://slack.kotlinlang.org/

https://kotlinlang.slack.com/
http://slack.kotlinlang.org/

Kotlin in Action

Thank you!

Victor Kropp
@kropp

victor.kropp.name

Questions?

Victor Kropp
@kropp

victor.kropp.name

